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This paper deals with a specially designed slender ship moving steadily at a chosen
supercritical speed in a suitable narrow shallow channel such that the wave resistance
becomes zero. It is a sequel to Chen & Sharma (1997), which predicted theoretically
the existence of a ship–channel configuration of zero wave resistance. It was derived
from a two-soliton solution of the Kadomtsev–Petviashvili equation. The present
theory comprises an improved shallow-water wave equation of Boussinesq type for
the far field and an enhanced slender body approximation in the near field. Moreover,
a physical model experiment performed in the Duisburg shallow water towing tank
(VBD) is reported. It confirms that at the exact design condition the ship’s reflected
bow wave cancels the stern wave so completely that there are almost no waves behind
the ship and the measured resistance is reduced so much that the wave resistance
component is practically zero.

1. Introduction
In an earlier paper (Chen & Sharma 1997) two of the present authors predicted on

the basis of an entirely theoretical analysis that the bow and stern waves of a slender
ship moving in a narrow shallow channel at a chosen supercritical speed can be made
to cancel each other so completely by a proper choice of hull–channel geometry that
there are no free waves behind the ship and, accordingly, it experiences no wave
resistance.

At supercritical speeds, i.e. U >
√

gh, where U is the ship speed, g the acceleration
due to gravity and h the water depth, the ship wave pattern looks like the shock
waves of a two-dimensional airfoil in supersonic flight. Both bow and stern waves
extend aft obliquely along their characteristic lines. But the bow wave is essentially
a free-surface elevation and the stern wave a depression, see figure 1(a). By the
nature of nonlinear shallow-water waves, the elevation can form an oblique soliton
through a balance of nonlinearity and dispersion, but the depression can never form
a ‘negative soliton’ and is necessarily dispersed. If the ship moves symmetrically along
the centreline of a narrow shallow channel of rectangular cross-section, its waves
must be reflected by the vertical sidewalls. If, further, the hull–channel geometry is
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Figure 1. Schematic of ship wave patterns at supercritical speed; moving coordinate system. (a)
In horizontally unbounded shallow water. (b) In a narrow shallow channel (design condition).

adapted to the chosen depth Froude number as required by the theory, the bow wave
after reflection from the channel sidewall would hit the after-body and cancel the
stern wave so that at the design speed the resultant wave in the ship’s wake would
disappear totally, see figure 1(b). We have previously proposed the name ‘shallow
channel superconductivity’ for this phenomenon.

The above theoretical result was subject to the restriction of the Kadomtsev–
Petviashvili (KP) shallow-water wave equation in the far field, which ignores viscosity
and accounts only to a certain extent for weak nonlinearity and dispersion, and
of the simple slender-body approximation in the near field, which accounts for the
flow displacement effect of the ship’s hull only to first order. This paper, a logical
continuation of the previous one, comprises two parts, namely a theoretical and an
experimental part. In the first part we attempt to improve the theory by replacing the
KP equation by an equation of Boussinesq type and by extending the slender-body
approximation to second order. An approximate two-soliton solution is obtained
following the approach of Miles (1977). In the second part, which may be the more
important, we report a model experiment carried out recently in the VBD towing
tank at Duisburg for validating our theory. The experimental results are shown in
detail as measured resistance curves and wave cuts, and illustrated by photographs
of the wave pattern. The experiment demonstrates that in the exact design condition
the ship’s (reflected) bow and stern waves indeed cancel each other so completely that
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almost no waves are observed behind the ship, and that the measured total resistance
is reduced so far that the estimated wave resistance becomes practically zero. This is
further corroborated by a comparison of measured and theoretical wave cuts.

2. Theory
2.1. Mathematical model

The particular problem considered here is a slender ship of length l, maximum
beam bm and draught d moving along the centreline of a straight rectangular shallow
channel of uniform depth h and width w. A right-handed Cartesian coordinate system
Oxyz moving at the same speed as the ship is used with origin O located at the
centre-point on the ship’s waterline plane, the plane Oxy coinciding with the quiescent
free surface, the axis z positive upward, and the axis x positive forward, as shown in
figure 1(b). The problem is obviously symmetric about the Ozx-plane, and if the ship
does not move at near-critical speeds, it can be treated as steady.

Unless otherwise stated, all variables are non-dimensionalized by reference to water
depth h, the acceleration due to gravity g, and the water density ρ. The same symbols
are used from now on for non-dimensional variables. For example, l/h → l is non-
dimensional ship length, Sm/h2 → Sm is non-dimensional midship section area, etc.
Note that our non-dimensional speed U/

√
gh → U is usually called the depth Froude

number Fnh.
The problem lends itself to a simplified solution by the method of matched

asymptotic expansions, exploiting in a natural way the assumed shallowness of the
water h/lw � 1, where lw is a typical wavelength, and the assumed slenderness of
the ship

√
Sm/l � 1, see e.g. Mei (1976), Mei & Choi (1987), Chen & Sharma (1994)

and Chen (1999). The following is an improved version of our previous mathematical
model (Chen & Sharma 1997) as applied to the special case in hand.

The far-field flow is governed by a two-dimensional slowly time-varying shallow-
water wave equation, Chen (1999, equation 1.40),

2Uϕxt + (1 − U 2)ϕxx + ϕyy + Uϕxϕyy + 3Uϕxϕxx + 2Uϕyϕxy

+ 1
3
U 2(ϕxxxx + ϕxxyy) = 0, (2.1)

where ϕ(x, y, t) is a depth-averaged perturbation velocity potential. This is a fairly
general model functioning in a wide speed range from subcritical to supercritical,
explicitly including the transcritical speed range where unsteady effects such as
upstream solitons are known to occur. However, for the present application to clearly
supercritical speeds we need only its stationary form, i.e. the term ϕxt is to be
dropped. Moreover, since now U > 1, if y is formally seen as time, the analogy to
a one-dimensional Boussinesq-type equation becomes evident (Drazin & Johnson
1989). The free-surface elevation ζ can be approximated as

ζ (x, y) = Uϕx. (2.2)

In the near-field flow around the ship, the law of mass conservation can be exploited
in terms of averaged velocities to yield an explicit boundary condition at the waterline
y = ±b(x)/2. Omitting the details, an improved slender-body approximation is found
to be

ϕy = ∓ 1

2(1 + ζ )

{
d

dx
[(U − ϕx)Sf (x)] − b(x)

d

dx
[(1 + ζ )(U − ϕx)]

}

at y = ±b(x)/2, (2.3)
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where

Sf (x) = S0(x) + (s + θx)b(x) + ζ (x)b(x) (2.4)

is an effective sectional area taking account of running sinkage s, running trim angle
θ (positive bow downward), and local wave elevation ζ at the waterline. Since we
are dealing with slender ships the waves generated are expected to be small. So
we introduce a smallness parameter ε =A/h, where A is a typical wave amplitude.
A natural normalization of equation (2.3) then yields the relation Sm/(hl) = O(ε)
between hull slenderness and wave smallness. By an analysis similar to Chen (1999)
it can be shown that the improved boundary equation (2.3) is of O(ε2) and, hence,
consistent with the improved field equation (2.1) after normalization, see equation (2.7)
in the next subsection.

The formulation of the problem is completed by specifying the simple no-flux
boundary condition on the channel sidewalls:

ϕy(x, ±w/2) = 0. (2.5)

The numerical task, especially in the inverse design problem, can be made much
easier by shifting the boundary condition (2.3) from the waterline y = ±b(x)/2 to the
centreline y = 0. Using truncated Taylor series expansions,

ϕy

(
x, ± 1

2
b(x)

)
= ϕy(x, ±0) ± 1

2
b(x)ϕyy(x, ±0),

and dropping terms of third order, which also allows the approximation ϕyy =
(U 2 − 1)ϕxx , a surprisingly simple form of equation (2.3) results:

ϕy(x, ±0) = ∓ 1

2(1 + ζ )

{
d

dx
[(U − ϕx)Sf (x)]

}
. (2.6)

This equation is given in Chen & Sharma (1994) but derived there by matched
asymptotic expansions. An equation equivalent in precision to (2.3) was obtained by
Chen (1999, equation 2.34) in yet another mathematical manner.

2.2. Approximate solution

As far as we know, equation (2.1) has no exact analytic two-soliton solution. But
an approximate solution can be found if the two solitons propagate in sufficiently
different directions, a case called the weak interaction by Miles (1977). For this
purpose we exploit the already introduced formal smallness parameter ε = A/h and
normalize variables as follows:

ϕ =
√

εφ, x = X/
√

ε, y = Y/
√

ε.

Thus equation (2.1) becomes

(1 − U 2)φXX + φYY + εUφXφYY + 3εUφXφXX

+ 2εUφY φXY + 1
3
εU 2 (φXXXX + φXXYY ) = O(ε2). (2.7)

Here, we consider only the supercritical case U > 1. Let us assume the above
equation has a two-soliton solution of a form given by Miles (1977),

φ = F (ξ + εσ1(η)) + G (η + εσ2(ξ )) (2.8)

with

ξ = X + cotα1Y − X1, η = X + cotα2Y + X2,

where F and G are single-soliton or solitary wave-train solutions, σ1 and σ2 are
phase shift functions due to the two-soliton interaction, X1 and X2 are initial phase
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constants, and α1 and α2 are the angles between the phase lines and the positive x-axis.
It is understood that two-component solitons are propagating in directions with equal
positive x-component and possibly unequal but opposite y-components, implying
that cotα1 and cotα2 have different signs. Weak interaction in the sense of Miles is
ensured if U is sufficiently larger than unity.

By substituting equation (2.8) into equation (2.7) and straightforward calculation
we obtain the condition

(1 − U 2 + cot2 α1)Fξξ + 3Uε(1 + cot2 α1)FξFξξ + 1
3
εU 2(1 + cot2 α1)Fξξξξ

+ (1 − U 2 + cot2 α2)Gηη + 3Uε(1 + cot2 α2)GηGηη + 1
3
εU 2(1 + cot2 α2)Gηηηη

+ εFξξ

[
2(1 − U 2 − cot2 α2)

dσ1

dη
+ U (3 − cot2 α2)Gη

]

+ εGηη

[
2(1 − U 2 − cot2 α1)

dσ2

dξ
+ U (3 − cot2 α1)Fξ

]
= O(ε2).

Since F and G are soliton solutions, each of the first two lines in the above condition
is a priori equal to zero. By setting each of the last two lines also equal to zero and
remembering that F and G are independent and non-zero, we can solve for the free
parameters σ1 and σ2:

σ1 =
U (3 − cot2 α2)

2(U 2 + cot2 α2 − 1)
G(η), (2.9)

σ2 =
U (3 − cot2 α1)

2(U 2 + cot2 α1 − 1)
F (ξ ). (2.10)

In other words, with σ1 and σ2 chosen as above, equation (2.8) becomes a solution of
equation (2.7), correct to O(ε). We now choose the following particular single-soliton
solutions F and G:

F (ξ ) = A1/k1 tanh(k1ξ ), G(η) = A2/k2 tanh(k2η),

cot2 αi =
U 2

1 + AiU
− 1, ki =

√
3AiU

2U
, i = 1, 2,

where Ai is the soliton amplitude and ki is its wavenumber. To ensure symmetry
about the plane y = w/2, which is physically equivalent to satisfying the no-flux
boundary condition on the channel sidewall, we have to set A1 = A2 =A, k1 = k2 = k,
x1 = x2 = x0, cotα1 = −cotα2 = cotα, subject to the conditions

cot α =
√

(U 2 − 1 − AU )/(1 + AU ),

k =

√
3AU

2U
,

w = 2x0/ cotα.

This solution represents a twin soliton, a particularly simple configuration possessing
yet another symmetry, namely about the y-axis, which, however, is not a necessary
condition for obtaining zero wave resistance, see Chen & Sharma (1996).

In order to check and possibly improve the precision of this approximate solution,
we performed a test study by means of the stationary standard KP equation for which
both exact and approximate solutions exist. The comparison showed that phase-shift
functions somewhat similar to (2.9) and (2.10) describe the process quite well but not
its final asymptotic value. The approximate solution underestimates the asymptotic
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Figure 2. Theoretical ship wave pattern at the design condition; the ship is at the centreplane
y = 0, channel sidewalls are at y/h = ±9.5.

phase shift by more than 50% for the design value of A. This suggested a heuristic
improvement of the approximate solution by introducing in front of the phase function
a constant factor fc, which can be easily estimated as the ratio of the asymptotic
phase shifts in the two KP solutions. It worked very well for the KP equation and
encouraged us to apply it to the present approximate solution using a value of
the factor derived for a KP equation of identical parameter values. Equation (2.8),
thus modified, reads

φ = F (ξ + εfcσ1(η)) + G(η + εfcσ2(ξ )), (2.11)

with fc = 2.3 for the design condition U = 1.414, ε = A/h = 0.15 and x0 = X0/
√

ε =
7.65636, defined in the next section. The theoretical wave pattern for this condition
is shown in figure 2. (See the Addendum for a further discussion of the phase-shift
factor fc.)

3. Design
The design task consists of two steps. First, the cross-sectional area curve of the

ship and the appropriate channel width are determined by theory for a chosen
depth Froude number and a trial twin-soliton, requiring some iteration to achieve a
prescribed hull displacement. Second, the detailed section shape, not prescribed by
the theory, is selected to meet the practical demand of a fair and simple hull geometry.
Also for simplicity, a ‘fixed’ towing mode is assumed, i.e. no running sinkage and trim
are permitted. This is not an inherent limitation imposed by the theory, but it does
facilitate the design of the experiment by precluding possible differences between the
theoretical and real values of sinkage and trim in the ‘free’ towing mode. The running
trim, by the way, is always zero in theory for a fore-and-aft symmetric hull form in the
waveless state.

In principle, three non-dimensional parameters, x0, A and U , can be freely chosen.
The theory would then yield a non-dimensional hull–channel configuration, i.e. a
family of geosims with the property of being waveless at the design Froude number
U . In practice, the physical model experiment has to be conducted on an object of
given absolute size. The VBD towing tank available to us is 200 m long, 9.8 m wide
and 1.3 m deep. The water depth is varied easily and routinely by pumping water into
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another tank, while the width can be varied on demand by erecting a temporary inter-
mediate wall with considerable yet justifiable effort. (It suffices to erect the intermediate
wall over the middle 80 m of the tank length where measurements are taken, leaving
the run-in and roll-out stretches of the tank undivided.) Since it was known from
previous trials that promising depth Froude numbers were around 1.5 and the ratio of
channel width to ship length around 0.5, we arbitrarily specified U =

√
2, along with

h = 0.2 m to ensure a feasible towing speed, and w = 3.8 m to ensure a reasonable
model length. With absolute size and two non-dimensional parameters, namely U

and w/h, now fixed, we were still free to manipulate the pair A and x0 to obtain
any desired hull displacement within a certain range. We finally chose A = 0.15 and
x0 = 7.656 as a compromise between extreme hull slenderness and excessive wave
steepness.

The effective sectional area curve Sf (x) can be obtained by integrating equation
(2.6):

Sf (x) = − 2

U − ϕx

∫ x

−∞
ϕy(1 + ζ ) dx, y = +0. (3.1)

However, in order to obtain the nominal sectional area curve S0(x) from equation
(2.4), we need to prescribe the local beam b(x) at the waterline. Partly anticipating
the later determination of section shapes on practical grounds, we assume a uniform
draught d and a uniform sectional area coefficient CM over the entire hull length. It
follows immediately that

b(x) =
S0(x)

CMd
. (3.2)

Substituting this into equation (2.4) we obtain easily

S0(x) = Sf (x)

[
1 +

ζ (x, +0)

CMd

]−1

. (3.3)

Returning now to the design of section shapes, we ensure fair waterlines by declaring
all sections to be affine transforms and, hence, defined by a single non-dimensional
function

y ′ = f (z′), z′ ∈ [−1, 0],

where y ′ = 2y/b(x) and z′ = z/d . Further, we ensure mathematical simplicity by
arbitrarily choosing an exponential function

f (z′) =
1 − exp[−7.5(z′ + 1)]

1 − exp[−7.5]
,

which can be integrated in closed form to yield a uniform sectional-area coefficient

CM =

∫ 0

−1

f (z′) dz′ = 0.8672.

Now, we can either freely choose uniform draught d and determine maximum beam
bm to comply with equation (3.2) or vice versa. Our specific choice was a draught
d = 15 cm.

One final detail remains to be explained. The theoretical sectional-area curve Sf (x)
extends from minus infinity to plus infinity, implying an unrealistic ship of infinite
length. Luckily, the curve decays exponentially so that an approximate practical hull
form of finite length can be acquired by simple truncation of the bow and stern
cusps. In absolute terms, we decided upon a ship length of 6 m, leaving the stem and
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Item Symbol Value Unit

Length at waterline l 6.000 m
Beam at midship bm 0.3892 m
Draught d 0.150 m
Area of midship section Sm 0.05063 m2

Displacement volume V 0.1283 m3

Displacement weight W = ρgV 128 kgf
Wetted surface area Sw 2.437 m2

Block coefficient CB = V/lbmd 0.3663
Midship section coefficient CM = Sm/bmd 0.8672

Wetted surface coefficient CWS = Sw/
√

V l 2.7776
Length/Depth l/h 30
Draught/Depth d/h 0.75
Design speed U 1.9803 m s−1

Design depth Froude number Fnh = U/
√

gh 1.414
Design water depth h 0.200 m
Design channel width w 3.800 m
Width/Depth w/h 19

Table 1. Principal dimensions of the ship model and the channel

stern as sharp edges of 2.7 mm thickness. The principal dimensions of final design are
compiled in table 1.

Note that for the same values of parameters U , A/h and x0 as above a hull
form designed according to our original recipe (Chen & Sharma 1997) would have
about 45% more displacement than the present form. This difference accrues from a
more accurate treatment of wave nonlinearity and of effective hull sectional area in
the present approach. (We note in passing that since the original design was never
validated by physical experiment, it is hard to say exactly just how much less efficient
it would have been. In other words, the gain in accuracy effected by improvement of
the theory cannot be quantified on the basis of the evidence available.)

4. Model experiment
To verify the foregoing theory an experiment was carried out in the VBD towing

tank. As stated above, the ship model was towed in the fixed mode. Resistance and
wave cuts were recorded not only in the design narrow channel of 3.8 m width but also
in the undivided towing tank of 9.8 m width. The latter is large enough to simulate
effectively sidewise unrestricted water and, hence, to serve as a reference.

Figure 3 shows our main result, namely the curves of specific total resistance RT /W

measured in the narrow channel of design width (solid line connecting dots) and in
the undivided tank of full width (dashed line connecting circles), both at the same
design depth. For the purpose of estimating wave resistance, which unfortunately
cannot be measured directly, a curve of specific frictional resistance RF /W derived
from the empirical formula of Hughes (1952, 1954) is also included. It is believed to
be the best approximation of the true friction line for infinitely thin smooth plates
in fully turbulent two-dimensional flow. As theoretically predicted, the measured
total resistance in the narrow channel drops dramatically at the exact design speed,
whereas in the wide tank the curve is as expected. Quantitatively, at the design depth
Froude number 1.414 the total specific resistance in the narrow channel is 0.0102
compared to 0.0327 in the wide tank, i.e. 69% less. At the same speed, the specific
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Figure 3. Measured specific total resistance in the narrow design channel (solid line connecting
dots) and in an effectively infinitely wide channel of the same depth (dashed line connecting
circles); the lowest smooth curve represents specific frictional resistance after Hughes (1952,
1954).

frictional resistance is 0.00994 after Hughes. Consequently, the residuary resistance
(RR = RT −RF ) based on the Hughes line is reduced by 99%. It is reasonable to state
that the wave resistance vanishes in the design condition.

Certain other features of the curves shown in figure 3 are also worth noting.
First, real ship resistance curves in a finite-width shallow channel exhibit a finite
transcritical speed range rather than a discrete critical speed; within the transcritical
range no steady state is ever achieved even at constant ship speed, so the points
shown here represent mean values, and such mean resistance curves are continuous
functions of speed. These important details are missed by strictly linear wave theories
but predicted well by our nonlinear wave model. Second, in the narrow channel
the steep rise in resistance begins at a lower subcritical speed and the transcritical
resistance plateau is accordingly higher and broader than in the wide tank. All this
can be physically understood as a consequence of the stronger blockage caused by
the same hull in the much smaller cross-section of the narrow channel. However, at
a sufficiently high supercritical speed, when the divergence angle of the bow wave
attains the appropriate value, favourable interference between the bow wave reflected
from the channel sidewall and the stern wave begins to dominate, causing the two
resistance curves to cross. At still higher speeds the divergence angle of the bow
wave decreases again, the favourable interference dwindles, and the two resistance
curves finally merge. In other words, some reduction in wave resistance can always
be achieved if ship length and speed are in the correct relation to channel depth and

width. This is roughly the case when 0.5 < (w/l)
√

F 2
nh − 1 < 1. However, to our

knowledge the total elimination of wave resistance enabled by our theoretical design
has never been observed before.

Longitudinal cuts through the wave pattern were acquired by taking time records
of the free-surface elevation by means of stationary wave probes as the model passed
at constant speed. An array of six equidistant probes was installed along a line normal
to the tank centreplane. Measurements were carried out at several speeds both in
the design configuration and the reference configuration. Five of the six transverse
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Figure 4. Measured wave cuts at the design depth Froude number Fnh = 1.414 (h = 0.2 m
and U = 1.98m s−1) in the 9.8m wide tank (dashed lines) and the 3.8m narrow channel (solid
lines); graphs from top to bottom are at y = 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8m. Note that the
probe at y = 1.5m was missing in the wide tank.

locations with respect to the model centreplane were identical in both configurations.
The comparison of primary interest is, of course, at the design depth Froude number,
as shown in figure 4. Evidently, the strong free waves behind the model in the wide
tank are almost totally absent in the narrow design channel, in accordance with the
dramatic drop in wave resistance. Quantitatively, the highest free-wave amplitude
observed in the wide tank is 100 mm and in the narrow channel only 4mm.

The most direct test of the theory is to compare the theoretical and experimental
wave patterns at the design condition. This is shown in figure 5 for six equidistant
longitudinal cuts. There is satisfactory agreement between theory and experiment,
except for a small phase shift which may be due to bottom friction or imperfect
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Figure 5. Comparison of theoretical (dashed lines) and experimental (solid lines) wave cuts
at design depth Froude number U = 1.414 in the design narrow channel (w/h = 19); graphs
from top to bottom are at y/h = 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0.
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Figure 6. Two photographs of the wave pattern at the design condition of zero wave
resistance: side view from starboard location (top) and port view from astern location (bottom).

reflection from the sidewalls. Figure 6 is an attempt to convey a visual impression of
the wave pattern in the design condition of zero wave resistance. Note the two high
wave crests alongside the model merging into a single crest at the channel sidewall. By
contrast, the free surface behind the model is almost flat except for wake turbulence.

5. Conclusions
The theoretical prediction of a state of zero wave resistance and no trailing waves

for a ship of sectional-area curve derived from a twin-soliton solution, moving at a
chosen supercritical speed in a rectangular channel of appropriate depth and width
has been verified by model experiments conducted in a specially designed narrow
shallow channel. It is expected that the improved mathematical model presented here
is more generally valid for calculating ship waves and wave resistance in shallow
water.

We thank the VBD management and staff for their substantial support in conduct-
ing the model experiments in the shallow-water towing tank at Duisburg. We are also
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and encouragement.

Addendum
During the review of this paper we were asked by one of the referees to further

justify the phase shift factor fc introduced heuristically in § 2.2. This led to our
discovering the following approximate two-soliton solution of our Boussinesq-type
equation, which is the steady version of equation (2.1), namely

ϕyy − (U 2 − 1)ϕxx + Uϕxϕyy + 3Uϕxϕxx + 2Uϕyϕxy + 1
3
U 2(ϕxxxx + ϕxxyy) = 0. (A 1)

This equation is conservative, i.e. it obeys at least two conservation laws. The first
represents conservation of mass, as becomes evident if we rewrite the equation as
follows:

∂

∂y

[
(1 + Uϕx)ϕy

]
=

∂

∂x

[
(U 2 − 1)ϕx − 3

2
Uϕ2

x − 1
2
Uϕ2

y + 1
3
U 2(ϕxxx + ϕxyy)

]
.

Since ϕx , ϕy and their higher derivatives tend to zero as x → ±∞, it yields∫ ∞

−∞
(1 + Uϕx)ϕydx = constant. (A 2)

The integrand F1 = (1 + Uϕx)ϕy is a conserved density. Physically, it is the local
(non-dimensional) mass flux in the y-direction since 1+Uϕx = 1+ζ is the local water
depth. The second conservation law represents conservation of momentum. It can
be obtained directly by a Lagrangian formulation of equation (A 1) if y is seen as a
time-like variable. The corresponding conserved density is the local (non-dimensional)
momentum flux in the y-direction, namely

F2 = 1
2
(1 + Uϕx)ϕ

2
y + 1

2
(U 2 − 1)ϕ2

x − 1
2
Uϕ3

x − 1
6
U 2ϕ2

xy + 1
6
U 2ϕ2

xx. (A 3)

This can be confirmed by a straightforward calculation, i.e. multiplying equation (A 1)
by ϕy . If we rewrite it as

∂

∂y

[
1
2
(1 + Uϕx)ϕ

2
y + 1

2
(U 2 − 1)ϕ2

x − 1
2
Uϕ3

x − 1
6
U 2ϕ2

xy + 1
6
U 2ϕ2

xx

]

=
∂

∂x

[
− 1

2
Uϕ3

y + (U 2 − 1)(ϕxϕy) − 3
2
Uϕ2

xϕy − 1
3
U 2(ϕxxxϕy + ϕyyxϕy − ϕxxϕxy

]
,

we obtain the second conservation law∫ ∞

−∞
F2dx = constant. (A 4)

Now we can apply this law to determine an optimum value of the phase-shift
factor fc in (2.11). (We note in passing that the first conservation law is automatically
satisfied.) If we subsitute the trial solution (2.11) into expression (A 3) the x-integral
of the y-derivative of F2 should be ideally zero at any value of y. This condition can
be exploited to determine an optimal value of fc in the least-squares sense. For this
we choose a number of discrete values of y in the interval 0 � y � w and minimize
the sum ∑

i

[∫ ∞

−∞

∂

∂y
F2(x, yi, fc) dx

]2

.
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For our design parameter values the numerical solution turns out to be fc = 2.04.
This compares well with a similar numerical solution 2.25 that can be derived using
the steady KP equation (3.1) from Chen & Sharma (1997).

The design tested and reported in this paper employed the value fc = 2.32 which was
not only derived from the KP equation as an approximation but also was the asymp-
totic rather than the numerically optimized value. We have confirmed that the exact
KP solution is almost identical to the approximate solution using fc. The use of the
phase-shift factor fc surely constitutes an improvement of the approximate solution.
But surprisingly, it does not seem to affect the design channel width w.
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